Experimental Dendroclimatic Reconstructions of the Southern Oscillation

 

Exactly dated tree-ring chronologies from El Niño Southern Oscillation (ENSO)-sensitive regions in subtropical North America and Indonesia register the strongest ENSO signal yet detected in tree-ring data worldwide and have been used to reconstruct the winter Southern Oscillation index (SOI) from 1706 to 1977. This reconstruction explains 53% of the variance in the instrumental winter SOI during the boreal cool season (December–February) and was verified by comparisons with independent instrumental SOI and sea surface temperature (SST) data. The large-scale SST anomaly patterns associated with ENSO in the equatorial and North Pacific during the 1879–1977 calibration period are reproduced in detail by this reconstruction. The tree-ring estimates also suggest a statistically significant increase in the interannual variability of winter SOI, more frequent cold events, and a slightly stronger sea level pressure gradient across the equatorial Pacific from the mid–nineteenth to twentieth centuries. Some of the variability in this reconstruction must be associated with background climate influences affecting the ENSO teleconnection to subtropical North America and may not arise solely from equatorial ENSO forcing. However, there is some limited independent support for the nineteenth to twentieth century changes in tropical Pacific climate identified in this reconstruction and, if substantiated, it will have important implications to the low-frequency dynamics of ENSO.

Click here to read the entire article.