Reconstruction and Analysis of Spring Rainfall Over the Southeastern U.S. for the Past 1000 Years

 

Tree-ring chronologies can provide surprisingly accurate estimates of the natural variability of important climate parameters such as precipitation and temperature during the centuries prior to the Industrial Revolution. Bald cypress tree-ring chronologies have been used to reconstruct spring rainfall for the past 1000 years in North Carolina, South Carolina, and Georgia. These rainfall reconstructions explain from 54% to 68% of the spring rainfall variance in each state, and are well verified against independent rainfall measurements. In fact, these tree-ring data explain only 6% to 13% less statewide rainfall variance than is explained by the same number of instrumental rain gauge records. The reconstructions indicate that the spring rainfall extremes and decade-long regimes witnessed during the past century of instrumental observation have been a prominent feature of southeastern United States climate over the past millennium. These spring rainfall regimes are linked in part to anomalies in the seasonal expansion and migration of the subtropical anticyclone over the North Atlantic. The western sector of the Bermuda high often ridges strongly westward into the southeastern United States during dry springs, but during wet springs it is usually located east of its mean position and well offshore. Similar anomalies in the western sector of the Bermuda high occurred during multidecadal regimes of spring rainfall over the Southeast. During the relatively dry springs from 1901 to 1939, the high often ridged into the Southeast, but the western periphery of the high was more frequently located offshore during the relatively wet period from 1940 to 1980. Spring and summer rainfall extremes and decade-long regimes over the Southeast are frequently out of phase, and the tendency for wet (dry) springs to be followed by dry (wet) summers also appears to reflect anomalies in the zonal position of the Bermuda high during spring and summer.

Click here to read the entire article.